
Three Minds, One Metal-Organic Frameworks: From Discovery to Application

Ill. Niklas Elmehed © Nobel Prize Outreach

Susumu Kitagawa

Prize share: 1/3

Ill. Niklas Elmehed © Nobel Prize Outreach

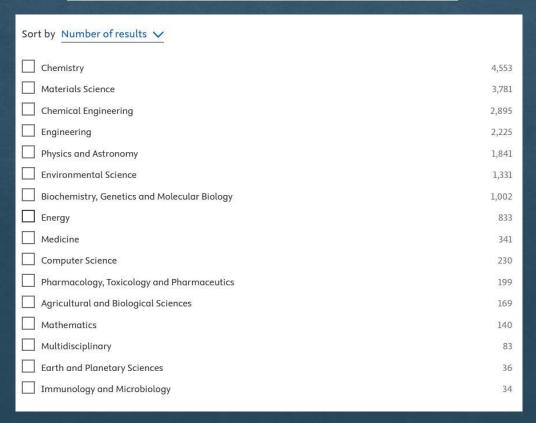
Richard Robson

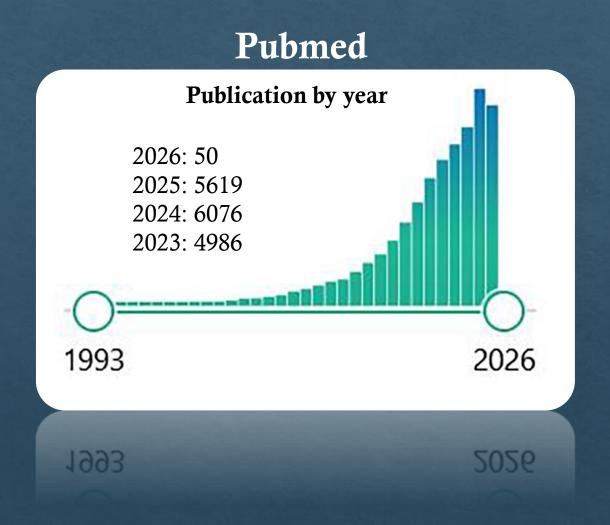
Prize share: 1/3

Ill. Niklas Elmehed © Nobel Prize Outreach

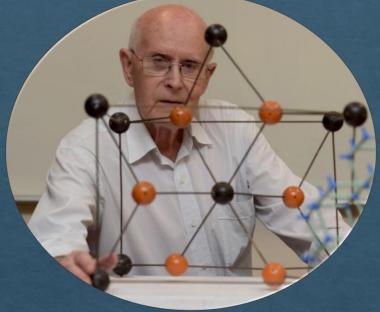
Omar M. Yaghi

Prize share: 1/3

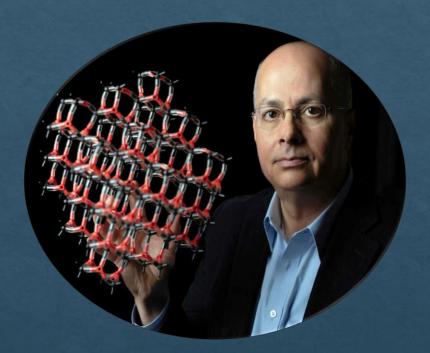

By: Dr. Somaye Karimian


1404/07/28

Trends in Annual Publication of Metal-Organic Frameworks across Scientific Fields


Scopus

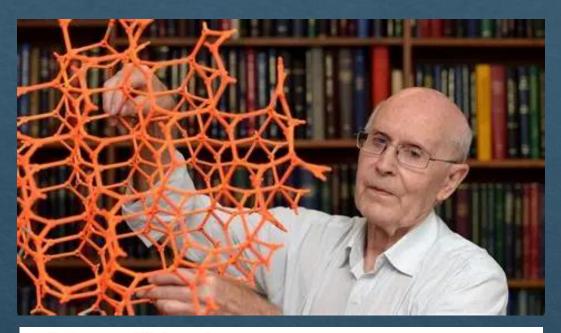
Three Minds that Shaped the Field


Richard Robson
4 June 1937, United Kingdom
University of Melbourne

The Architect of Coordination Polymers

Susumu Kitagawa 4 July 1951, Kyoto, Japan Kyoto University

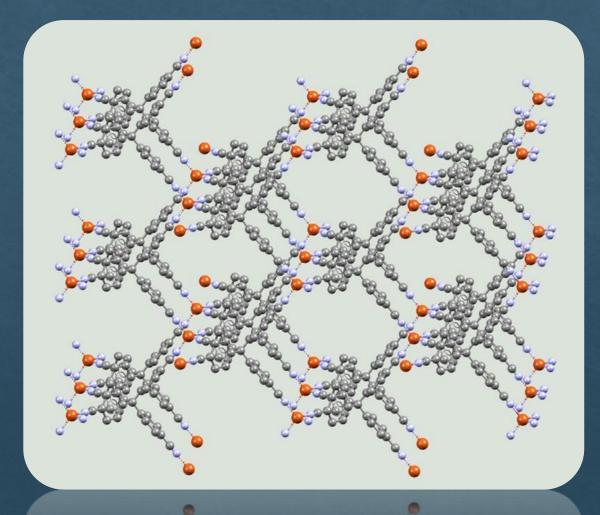
The Master of Porous Frameworks


Omar Yaghi
9 February 1965, Amman
University of California, Berkeley

The Architect of Reticular Chemistry and

secondary building units (SBUs)

Richard Robson



Robson, Richard

School of Chemistry, Melbourne, Australia • Scopus ID: 57206293562 • 10 Connect to ORCID 7 Show all information

18,582 168 58
Citations by 12,402 documents Documents h-inde

The 1989 coordination polymer that started it all was based on the structure of diamond

Susumu Kitagawa

"This is the mind of the researcher in Japan. Don't switch off the light, even at night."

Susumu Kitagawa

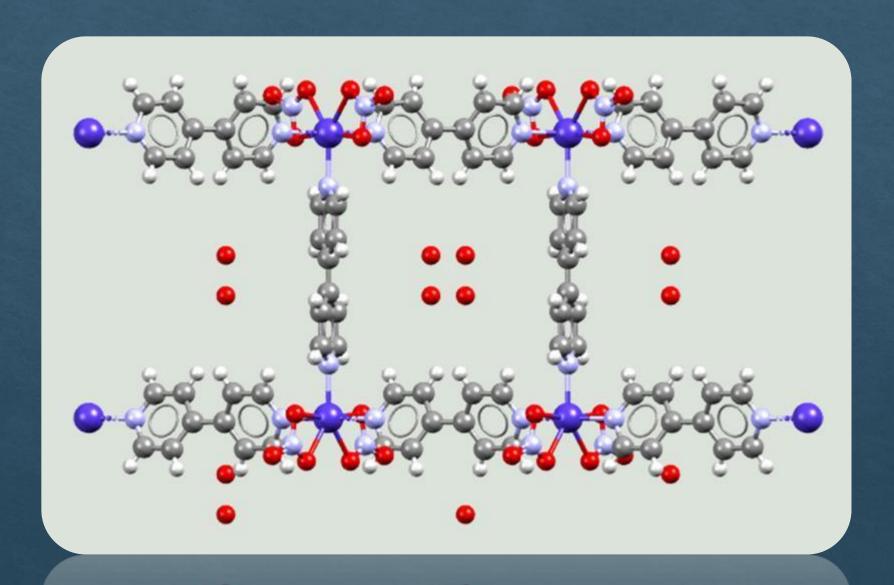
Current affiliation: Kyoto University, Kyoto, Japan

Scopus ID: 7201690696

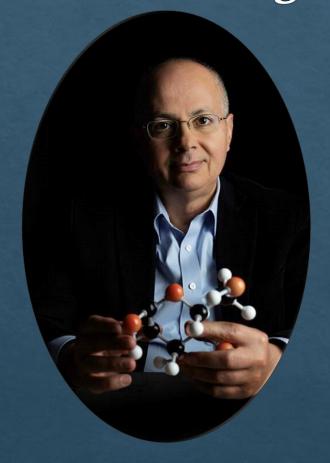
88,165 814 140 6 1,383 Citations from 50,871 documents h-index Co-authors Documents Preprints

Google Scholar

Susumu Kitagawa


Kyoto University Verified email at icems.kyoto-u.ac.jp - Homepage

Chemistry of Coordination ... Porous Coordination Polym...


2025, Citations: 5042	CITED BY	YEAF
Functional porous coordination polymers S Kitagawa, R Kitaura, S Noro Angewandte Chemie International Edition 43 (18), 2334-2375	12308	2004
Metal-organic frameworks (MOFs) S Kitagawa Chemical Society Reviews 43 (16), 5415-5418	4009	2014
Soft porous crystals S Horike, S Shimomura, S Kitagawa Nature chemistry 1 (9), 695-704	2497	2009
Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013) SR Batten, NR Champness, XM Chen, J Garcia-Martinez, S Kitagawa, De Gruyter	1716	201
Highly controlled acetylene accommodation in a metal—organic microporous material R Matsuda, R Kitaura, S Kitagawa, Y Kubota, RV Belosludov, Nature 436 (7048), 238-241	1590	200
Dynamic porous properties of coordination polymers inspired by hydrogen bonds S Kitagawa, K Uemura	1564	200

Cited by	ited by VIEW ALI	
	All	Since 2020
Citations	104240	35469
h-index	146	87
i10-index	692	433
		7000
	ш	5250
		3500
		1750
2018 2019 2020	2021 2022 2023 2	024 2025 0
Public access		VIEW ALL
43 articles		71 articles
not available		available
Based on fundin	g mandates	
n-authors		VIEW ALL

Kitagawa's 1997 compound could absorb and release different gases from its pores

Omar M. Yaghi

Omar M. Yaghi

Current affiliation: Berkeley College of Chemistry, Berkeley, United States

Scopus ID: 7005061054

222,117 Citations from 96,850 documents 392 Documents 188 h-index 20 Preprints

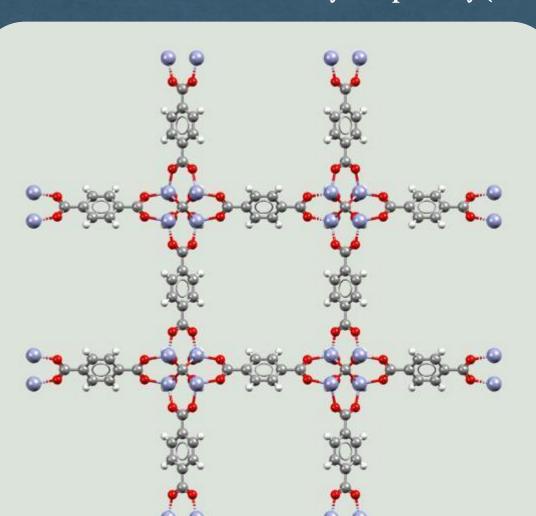
FOLLOW

872

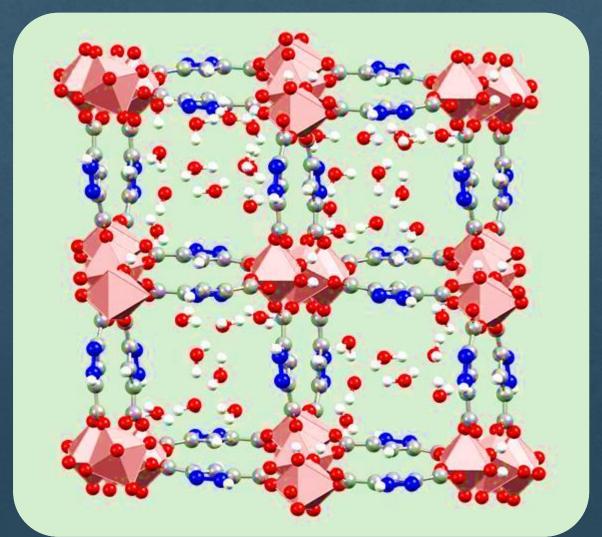
Co-authors

Google Scholar

Omar M. Yaghi

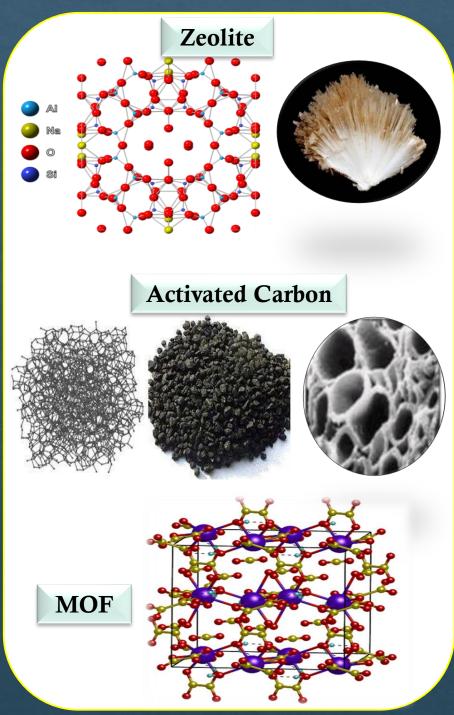

University Professor & James and Neeltje Tretter Professor of Chemistry, UC Berkeley Verified email at berkeley.edu - Homepage

Reticular Chemistry Metal-Organic Framework Covalent Organic Framework

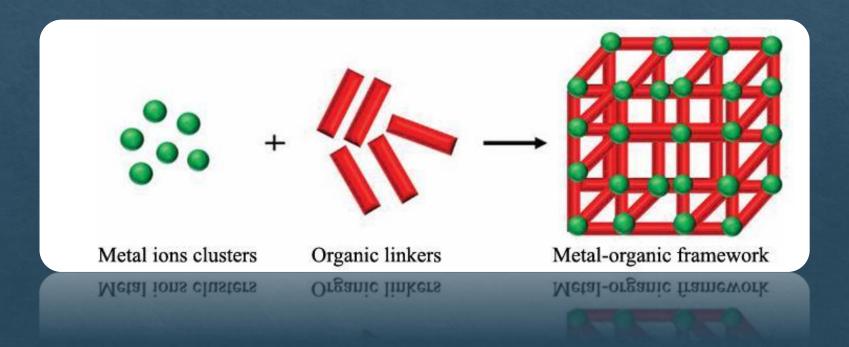

2025, Citations: 17999	CITED BY	YEAR
The chemistry and applications of metal-organic frameworks H Furukawa, KE Cordova, M O'Keeffe, OM Yaghi Science 341 (6149), 1230444	16595	2013
Reticular synthesis and the design of new materials OM Yaghi, M O'Keeffe, NW Ockwig, HK Chae, M Eddaoudi, J Kim Nature 423 (6941), 705-714	10959	2003
Design and synthesis of an exceptionally stable and highly porous metal-organic framework H Li, M Eddaoudi, M O'Keeffe, OM Yaghi nature 402 (6759), 276-279	9954	1999
Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage M Eddaoudi, J Kim, N Rosi, D Vodak, J Wachter, M O'Keeffe, OM Yaghi Science 295 (5554), 469-472	9499	2002
Porous, crystalline, covalent organic frameworks AP Côté, Al Benin, NW Ockwig, M O'Keeffe, AJ Matzger, OM Yaghi science 310 (5751), 1166-1170	8072	2005
Exceptional chemical and thermal stability of zeolitic imidazolate frameworks	7933	2006

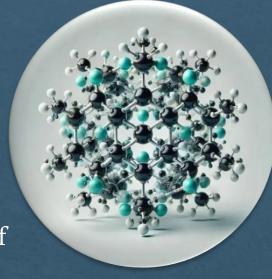
Cited by		VIEW ALL
	All	Since 2020
Citations	274859	117751
h-index	197	147
i10-index	427	352
_		21000
ш		15750
		10500
		5250
2018 2019 2020	2021 2022 2023	2024 2025 0
Public access		VIEW ALL
14 articles		144 articles
		available
not available		available

MOF-5 had incredible stability and porosity (1995)



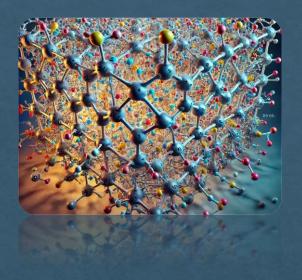
A MOF-303 from 2021 can harvest water from dry desert air


Why MOFs? The Evolution of Porous Materials


Property	Zeolite	Activated Carbon	MOF
Composition	Crystalline aluminosilicates (Si– Al–O framework)	Amorphous carbonaceous material	Metal ions/clusters coordinated to organic linkers
Structure type	Highly ordered, rigid framework	Disordered, porous network	Highly ordered, tunable crystalline framework
Pore size	Uniform, typically < 1 nm (microporous)	Broad distribution (micro-meso-macro)	Adjustable from micro to mesoporous by linker design
Surface area (m ² /g)	300–800	500–2000	Up to >10,000
Chemical tunability	Limited substitution (Si/Al ratio)	Possible surface oxidation or doping	Highly tunable via linker and metal choice
Thermal stability	Excellent (up to ~700 °C)	Good (up to ~500 °C)	Moderate (usually <400 °C, depends on MOF type)
Crystallinity	Crystalline	Amorphous	Crystalline
Hydrothermal stability	High	Moderate	Variable (can be improved by metal/linker selection)
Applications	Catalysis, ion exchange, gas drying	Adsorption, water/air purification, energy storage	Gas storage, catalysis, drug delivery, sensing, separations

Metal-Organic Framework (MOF)

A Metal-Organic Framework (MOF) is a porous, crystalline material made of metal ions or clusters linked by organic ligands, forming tunable, highly porous structures with large surface areas.

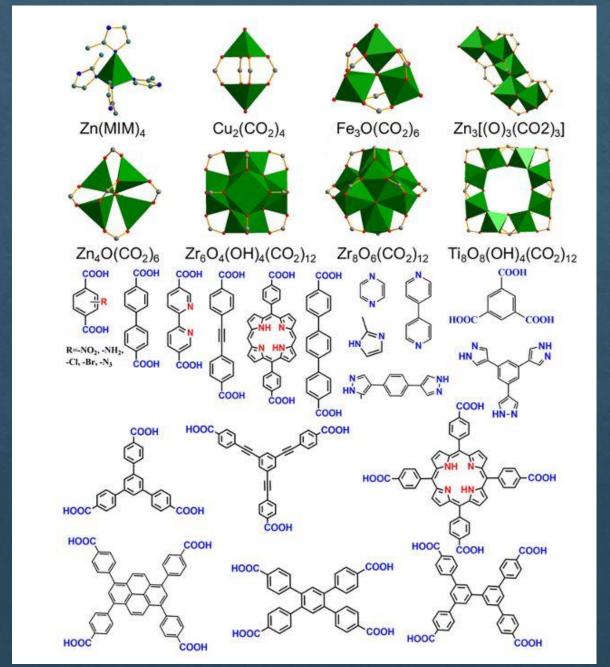

Key Features of Metals and Organic Linkers in MOF Design

Metal Node: The metal serves as the core of the framework, playing a crucial role in determining the stability, structure, and overall functionality of the MOF.

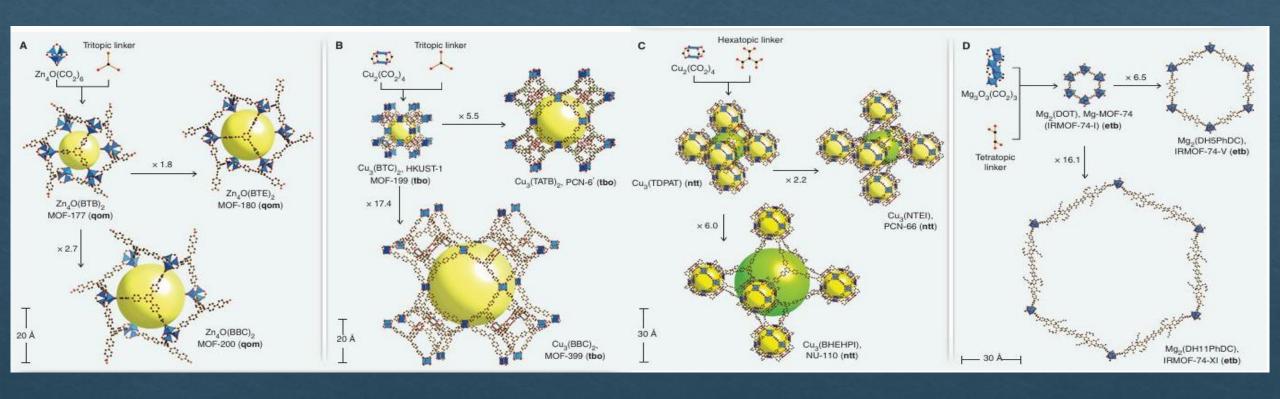
Desirable characteristics of the metal:

- * High coordination capacity (to form extended 3D networks)
- * Ability to form stable bonds with oxygen or nitrogen donor atoms
- * Suitable chemical and thermal stability
- * Possibility of paramagnetic behavior or catalytic activity, depending on the intended application

Common metal ions used: Zn²⁺, Cu²⁺, Co²⁺, Ni²⁺, Fe³⁺, Al³⁺, Zr⁴⁺, Mg²⁺, Mn²⁺, Gd³⁺

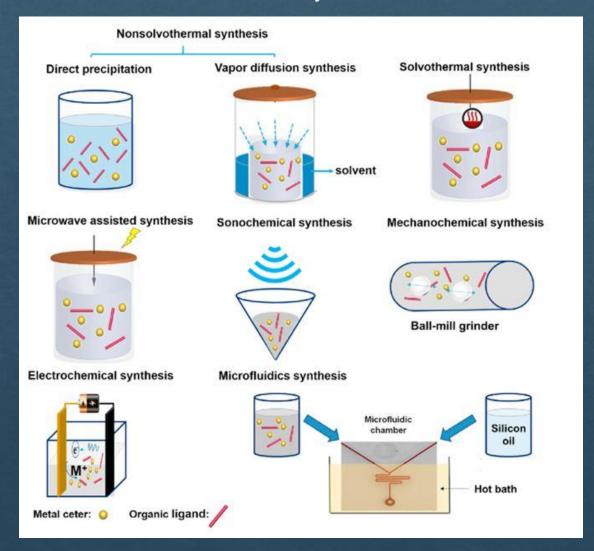

Organic Linker: Organic linkers act as bridges connecting the metal nodes, defining the pore size, shape, and overall topology of the MOF.

Desirable characteristics of the linker:

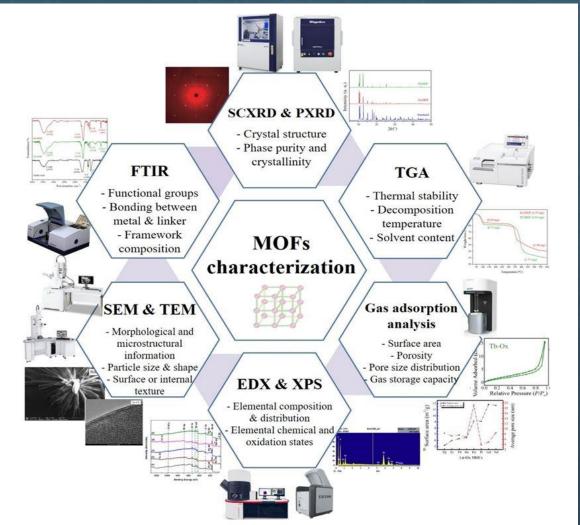

- •Presence of electron-donating functional groups (-COOH, -NH₂, -N=N-, -OH, imidazole, triazole)
- •Multidentate nature, capable of coordinating with multiple metal centers
- •Stability under reaction conditions
- •Adjustable length and flexibility to tune pore dimensions

Common linkers: BDC (benzene-1,4-dicarboxylic acid), BTC (benzene-1,3,5-tricarboxylic acid), imidazole, triazole, bipyridine

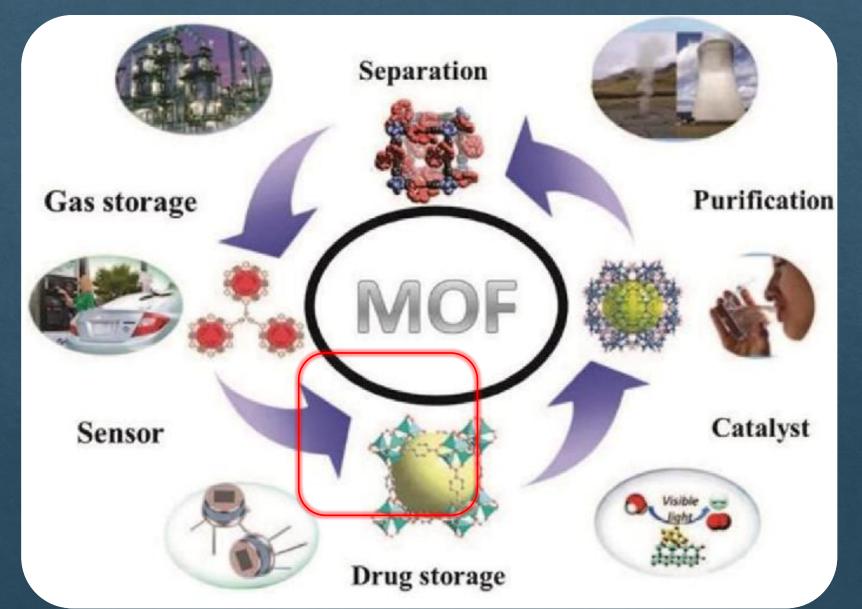
Some representative SBUs and organic linkers for MOFs.



Effect of Metal and Ligand Type on the Structure and Porosity of Metal–Organic Frameworks (MOFs)



Thus, the rational design of ligands and the appropriate choice of metal centers are key to controlling the structure and functionality of MOFs.


Overview of MOFs synthesis methods.

Overview of the basic characterization techniques for MOF materials.

Application of MOFs

Metal and Ligand Selection for Biomedical and Drug Delivery Applications

Suitable Metal Centers

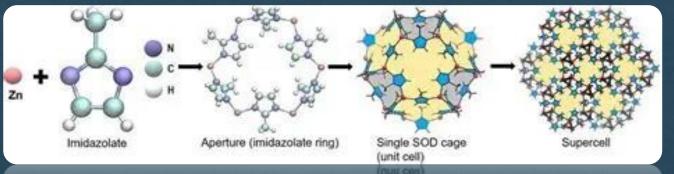
- ➤ Low toxicity (< 0.1 ppm free metal in blood)
- \triangleright High coordination stability (log K > 10)
- > Ion-exchange ability for drug or imaging probe release

Zn²⁺ (ZIF-8): Non-toxic, stable at pH 5–7, ideal for pH-responsive drug release (e.g., 5-FU). Fe³⁺/Fe²⁺ (MIL-100/101): Biodegradable, MRI (T₂ contrast), up to 30% drug loading. Zr⁴⁺ (UiO-66): Extremely stable (pH 1–11), biocompatible Mn²⁺ (Mn-MOF): Paramagnetic (MRI T₁ contrast), low toxicity when optimized.

Suitable Organic Linkers

- ✓ Biocompatibility and metabolizable or excretable ligands
- ✓ Small size (MW < 300 Da) for porosity (2–5 nm)
- ✓ Strong M–N or M–O bonding for hydrolytic stability

Imidazoles (e.g., 2-methylimidazole): In ZIF-8; cheap, pH-responsive, stable. Carboxylic acids (e.g., BDC): In MIL-53; high drug loading (20–30%), biocompatible. Porphyrins / Tetrapyrroles (e.g., PCN-224): Fluorescent, useful for PDT and bio-imaging.


Desired Properties of MOFs for Biomedical and Drug Delivery Applications

Property	Optimal Range / Requirement	Purpose
Particle size	50–200 nm	Efficient cellular uptake, long blood circulation, avoids RES clearance
Surface area	1000–2000 m²/g	High drug/contrast agent loading (up to 40 wt%)
Thermal & chemical stability	Stable up to 300–400 °C; pH 4–8	Resistance to physiological and acidic environments
Porosity & pore volume	Pores 2–5 nm; 0.5–1 cm ³ /g	Loading of diverse drugs (e.g., doxorubicin, 5-FU)
Functionalization	PEG, silica, or antibody coating (e.g., folate)	Targeted delivery and reduced toxicity
Controlled release	pH-responsive (≈80% at pH 5 vs 20% at 7.4); stimuli-responsive (light, heat)	Sustained and site-specific release

Optimized particle size, high porosity, and smart surface functionalization make MOFs ideal nanocarriers for safe and targeted drug delivery.

Comprehensive List of Drugs Encapsulated in ZIF-8

Drug	Application	Loading Method	Loading Capacity (w/w)	Success Rate
Doxorubicin (DOX)	Breast, lung, blood cancers	One-pot / Impregnation	20-30%	80-85% release at pH 5-6, targeted toxicity on cancer cells
5-Fluorouracil (5-FU)	Colorectal, breast cancers	One-pot / Co-crystallization	~85% (release)	85% release in 12 hours, combined with C-dots for imaging
Curcumin (CUR)	Breast, cervical, liver cancers	Impregnation / One-pot	28-49%	3x release at pH 5, 76.8% toxicity on HeLa, reduced drug resistance
BIBR 1532	Telomerase inhibition (various cancers)	Encapsulation	-	Enhanced cellular uptake, G0/G1 arrest, low toxicity to healthy cells
Benznidazole (BNZ)	Chagas disease, potential anticancer	Impregnation	-	Improved bioactivity, slow and stable release
Homoharringtonine (HF)	Melanoma (skin cancer)	One-pot (PEG/ZIF-8@HF)	41.45%	Strong anti-tumor effect, increased caspase-3/8, reduced MMP-9
Paclitaxel (PTX)	Lung, breast cancers	Encapsulation (ICG)		80% tumor growth inhibition, pH/NIR-responsive release, imaging
Methotrexate (MTX)	Liver, prostate, stomach cancers	Impregnation (CS/ZIF-90)	-	pH-responsive release, high selective toxicity
Ibuprofen (IBU)	Initial test (anti-inflammatory)	Impregnation	-	pH-sensitive release, enhanced stability
Caffeine (CAF)	Delivery of small molecules	Impregnation	28%	Successful loading, controlled release
Bortezomib (BTZ)	Breast cancer	Encapsulation	-	Synergistic effect, controlled release
EGCG (Palmitate derivative)	Anticancer antioxidant	Impregnation	-	Enhanced stability, anti-tumor effect

Future Challenges of MOFs in Biomedical

1. Toxicity & Biocompatibility

Heavy metals (Gd, Cu) may cause toxicity in biomedical uses.

2.Industrial Scalability

Upscaling from lab (mg–g) to industrial scale (kg–ton) is costly and complex.

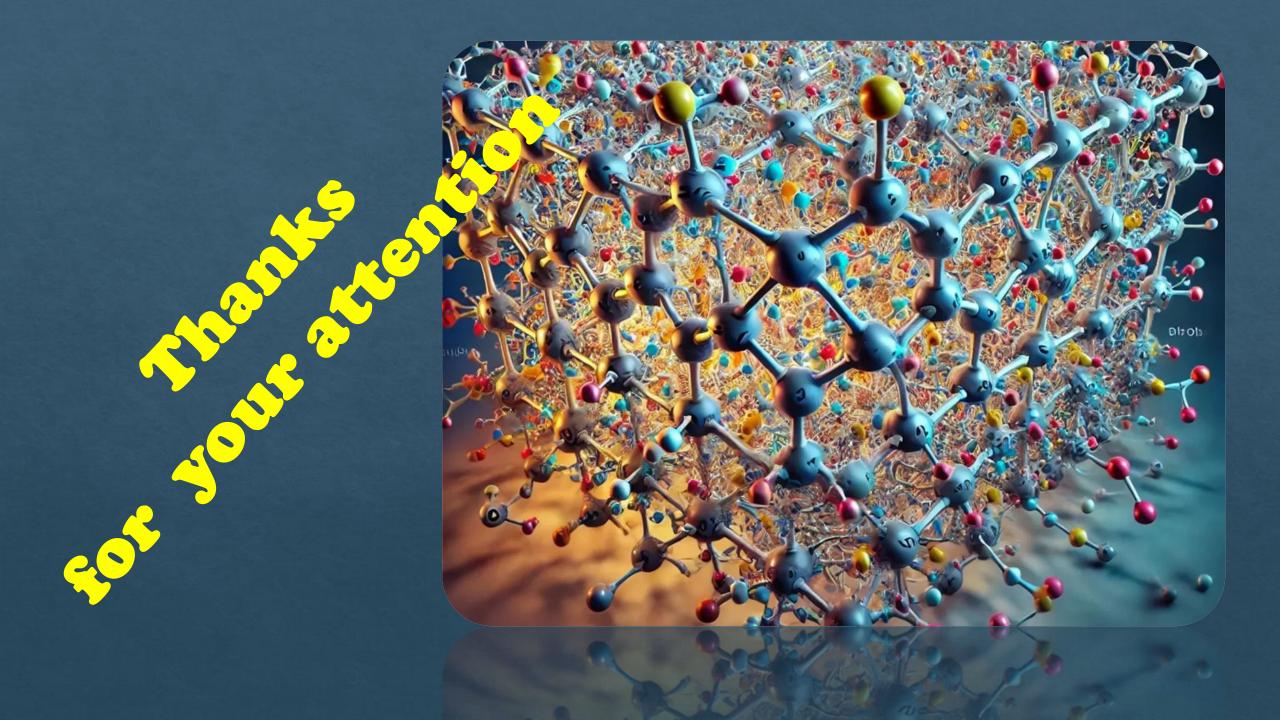
3. Stability in Biological Conditions

Degradation under variable pH or enzymes reduces efficiency.

4. Cost & Accessibility

Expensive linkers/metals (e.g., Zr, porphyrins) limit commercialization.

5. Targeted Tunability


Need precise control of porosity & functionalization for disease-specific delivery.

6. Regulatory & Clinical Approval

Clinical translation needs strict toxicity and metabolism assessments

References

- Ranocchiari M, van Bokhoven JA. Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics. 2011;13(14):6388-96
- Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-Manzari M. Opportunities and challenges in biomedical applications of metal–organic frameworks. Journal of Inorganic and Organometallic Polymers and Materials. 2021;31(12):4443-62.
- Sun Y, Zheng L, Yang Y, Qian X, Fu T, Li X, et al. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Letters. 2020;12(1):103.
- Ahmad BIZ, Keasler KT, Stacy EE, Meng S, Hicks TJ, Milner PJ. MOFganic chemistry: challenges and opportunities for metal–organic frameworks in synthetic organic chemistry. Chemistry of Materials. 2023;35(13):4883-96.
- Della Rocca J, Liu D, Lin W. Nanoscale metal—organic frameworks for biomedical imaging and drug delivery. Accounts of chemical research. 2011;44(10):957-68.
- Luo Z, Fan S, Gu C, Liu W, Chen J, Li B, et al. Metal–organic framework (MOF)-based nanomaterials for biomedical applications. Current medicinal chemistry. 2019;26(18):3341-69.
- Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H-L. Metal-organic frameworks: Structures and functional applications. Materials Today. 2019;27:43-68.
- Kundu S, Swaroop AK, Selvaraj J. Metal-organic framework in pharmaceutical drug delivery. Current Topics in Medicinal Chemistry. 2023;23(13):1155-70
- Song Y, Han S, Liu S, Sun R, Zhao L, Yan C. Biodegradable imprinted polymer based on ZIF-8/DOX-HA for synergistically targeting prostate cancer cells and controlled drug release with multiple responses. ACS Applied Materials & Interfaces. 2023;15(21):25339-53.

